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Abstract: Fluctuations of Bit-Error-Rate (BER) stimulated by birefringent
disorder in an optical fiber system are found to be strong. The effect may not
be analyzed in terms of the average BER but rather requires analyzing the
Probability Distribution Function (PDF) of BER. We report the emergence
of the extremely extended algebraic-like tail of the PDF, corresponding to
anomalously large values of BER. We analyze the dependence of the PDF
tail, and thus the outage probability, on the first-order PMD compensation
scheme. Effectiveness of compensation is illustrated quantitatively using a
simple, however, practical example.
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1. Introduction

Polarization Mode Dispersion (PMD) is recognized to be a substantial impairment for optical
fiber systems with the 40-Gbs/s and higher transmission rates. One may not have a complete
control over PMD since the fiber system birefringence is changing substantially with time un-
der the influence of environmental condition (e.g., stresses and temperature) fluctuations, see
e.g., [1, 2]. Thus, dynamical PMD compensation became a major issue in modern optical fiber
telecommunication technology [3, 4]. Development of experimental techniques capable of the
first- [5, 6, 7] and higher-orders [7, 8] PMD compensation have raised a question of how to
evaluate the compensation success (or failure). Traditionally, the statistics of the PMD vectors
of first [9, 10, 11] and higher orders [12, 13, 14] is considered as a measure for any partic-
ular compensation method performance. However, these objects are only indirectly related to
what actually represents the fiber system reliability. In this letter we show that the PMD effects
should be considered only together with the impairments due to amplifier noise, since fluctua-
tions of BER caused by variations of the birefringent disorder, are substantial. We demonstrate
that the probability of extreme outages is much larger than one could expect from naive esti-
mates singling out effects of either of the two impairments. This phenomenon is a consequence
of a complex interplay between the impairments of different natures: Birefringent disorder is
frozen, i.e., it does not vary on all propagation-related time scales, while the amplifier noise is
short-correlated. The effect may not be explained in terms of just an average value of BER, or
statistics of any PMD vectors of different orders, but rather should be naturally described in
terms of the PDF of BER, and specifically its tail. A consistent theoretical approach to calculat-
ing the tail will be briefly sketched, with a prime attention given to the analysis of the effects of
the first- and higher-order compensation on the extreme outages measured in terms of the PDF
of BER.

2. Bit-Error-Rate

We consider the so-called return-to-zero modulation format, when pulses (information carriers)
are well separated in time t. The quantity measured at the output of the optical fiber line is the
pulse intensity:

I =
∫

dt G(t) |K Ψ(Z, t)|2 , (1)

where G(t) is the convolution of the electrical (current) filter function with the sampling win-
dow function. The two-component complex field Ψ(Z, t) describes the output signal envelope.
The two components correspond to two polarizations of the optical fiber mode. The linear op-
erator K in Eq. (1) stands for a variety of engineering “tricks” applied to the output signal.
They consist of the optical filter K f , and the compensation Kc parts, respectively, assuming
the compensation is applied first followed by filtering, i.e. K = K f ×Kc. Ideally, I accepts
two different values depending on whether the information slot is vacant or filled. However, the
impairments enforce deviations of I from their ideal values. Therefore, one has to introduce a
threshold (decision level) Id and declare that the signal encodes “1” if I > Id and is related to
“0” otherwise. Sometimes the information is lost, i.e. an initial “1” is detected as a “0” at the
output or vise versa. BER is the probability of such an “error” event (with the statistics collected
over many pulses coming through a fiber with a given realization of birefringent disorder). For
successful system performance the BER must be extremely small, i.e. both impairments typ-
ically cause only small distortions to a pulse. It is straightforward to verify that anomalously
high values of BER originate solely from the “1 → 0” events. We denote the probability of such
events by B. Note, that errors associated with pulse migration/jitter from neighboring informa-
tion slots are not considered here. These migration effects that should be definitely taken into
account in the Non-Return-To-Zero (NRZ) modulation format case are strongly suppressed for
the RZ modulation format since the ratio of the pulse width to the slot width is small. Non-zero
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B is actually caused by the noise, the value, however, depending on a particular realization of
the birefringent disorder.

3. Noise averaging

We consider the linear propagation regime, when the output signal Ψ can be decomposed into
two contributions: ϕ, related to a noiseless initial pulse evolution and the noise-induced φ
part of the signal. φ appears to be a zero-mean Gaussian variable (insensitive to a particular
realization of birefringence and chromatic dispersion in the fiber) and is fully characterized by
the pair correlation function

〈φα (Z, t1)φ∗
β (Z, t2)〉 = Dξ Zδαβ δ(t1 − t2). (2)

Here, Z is the total fiber line length, and the product Dξ Z is the amplified spontaneous emission
(ASE) spectral density accumulated along the system. The coefficient Dξ is introduced into Eq.
(2) to reveal the linear growth of the ASE factor with Z [15].

4. Disorder averaging

The noise-independent part of the signal is

ϕ = exp

(
i
∫ Z

0
dzd(z)∂ 2

t

)
ÛΨ0(t) , Û = Texp

[∫ Z

0
dzm̂(z)∂t

]
, (3)

where Ψ0(t), z, and d(z) are the input signal profile, coordinate along the fiber, and the local
chromatic dispersion, respectively. The ordered exponent Û depends on the 2× 2 matrix m̂(z)
that characterizes the birefringent disorder. The matrix can be represented as m̂= hj σ̂ j , hj(z)
being a real three-component field and σ̂ j the Pauli matrices. Averaging over many states of the
birefringent disorder any given fiber is going through (birefringence varies on a time scale much
longer than any time scale related to the pulse propagation through the fiber or,equivalently
instant states of birefringence in different fibers, one finds that hj(z) is a zero-mean Gaussian
field described by the following pair correlation function

〈hi(z1)hj(z2)〉 = Dmδi j δ(z1 −z2). (4)

If birefringent disorder is weak the integral H =
∫ Z

0 dzh(z) coincides with the PMD vector.
Thus, Dm = k2/12, where k is the so-called PMD coefficient.

H-dependence of BER. For successful fiber system performance the BER should be ex-
tremely small, i.e. typically both impairments can cause only small distortions of a pulse. Stated
differently, the optical signal-to-noise ratio (OSNR) and the ratio of the squared pulse width to
the mean square value of the PMD vector are both large. OSRN can be estimated as I0/(Dξ Z)
where I0 =

∫
dt |K fΨ0(t)|2, and the integration goes over a single slot populated by an ideal

(initial) pulse, encoding “1”. Since the value of OSNR is large averaging over the noise can be
performed using the saddle-point method. This leads to a conclusion that Dξ Z lnB depends on
the birefringence, shape of the initial signal and the details of the compensation and measure-
ment procedures, being, however, independent of the noise. Typically, B fluctuates around B0,
the zero-disorder( hj = 0) value of B. For any finite value of h one gets, ln(B/B0) = ΓI0/(Dξ Z),
where the dimensionless factor Γ depends on h. Since the noise is weak, even small disorder
can generate strong increase in B. This implies that a perturbative calculation of Γ based on ex-
panding the ordered exponent Û in Eq. (3) in powers of m̂, describes the most essential part of
the PDF of B. Thus, in the situation when no compensation is applied one derives Γ = µ1H3/b,
whereas in the simplest case of the “setting the clock” compensation, accounting for the av-
erage (typical) temporal shift (this corresponds to the change of t in Eq.(1) to t − tcl , where
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the tcl is the z-independent shift dependent on the birefringence profile h(z)), one arrives at
Γ = µ2(H2

1 + H2
2 )/b2, b and µ1,2 being the pulse width and some dimensionless coefficients,

respectively.

5. Long tail

The PDF S (B) of B (that appears as a result of averaging over many realizations of the bire-
fringent disorder) can be found by recalculating the statistics of Hj using Eq. (4) followed by
substituting the result into the corresponding expression that relates B to Hj . Our prime interest
is to describe the PDF tail that corresponds to the values of Hj substantially exceeding their
typical value

√
DmZ remaining, however, much smaller than the signal duration b. In this range

one gets the following estimates for the differential probability S (B)dB:

a) exp

[
−

D2
ξ Zb2

2Dmµ2
1 I2

0

ln2
(

B
B0

)]
dB
B

, b)
Bα

0 dB

B1+α , (5)

where (a) corresponds to the no-compensation situation, (b) stands for the optimal “setting the
clock” case, and α ≡ Dξ b2/(2µ2DmI0). Note, that the result in the case (b) shows a steeper
decay compared to the case (a), which is a natural consequence of the “setting the clock” com-
pensation.

6. PMD compensation

Effects of PMD can be reduced by using a device usually called a PMD compensator (PMDC).
Any PMDC consists of two parts: a compensating (optical) part responsible for the compensa-
tion itself, and a measuring part that extracts (measures) relevant information on the transmis-
sion fiber birefringence. The compensator of N-th order consists of N pieces of polarization-
maintaining fiber (i.e., described by uniform, position independent, birefringence vector) usu-
ally surrounded by two polarization controllers, that allow rotation of the polarization state [6].
This implies that the optical part of a PMDC can be characterized by its transfer function. Ad-
ditionally, one would naturally distinguish between (i) describing a compensator in terms of
available transfer functions, and (ii) compensating strategy, i.e. a prescription of how to fix the
compensating degrees of freedom based on the measured data. The first order PMD compen-
sator corresponds to Kc = K1,

K1(M) = exp(−Mj σ̂ j∂t) , (6)

with j = 1,2,3. Such a form of the compensating operator Kc offers richer adjustment options
compared to the “setting the clock” compensation as it actually contains three compensating de-
grees of freedom, i.e. the three components of the compensating vector M , instead of one. Note
also, that the transfer matrix Û of the transmission fiber is defined as an ordered exponential (3),
whereas the compensating operator K1 is defined in terms of the usual exponential (6), simply
because birefringence is uniform along the compensating part but varies significantly along the
transmission fiber. The standard PMD compensation strategy, discussed in the literature, boils
down to compensating for as many terms as possible in the ordered exponential Û expansion
in the series in h [12, 13, 14]. Therefore, in the first-order compensator case (6) one chooses,
M =

∫ Z
0 dzh(z), to ensure the expansion of K1Û − 1̂ in a series in h starts with the O(h2) terms

only. Expanding K1Û in h followed by substituting the result into Eq. (1) and evaluating B
leads to

Γ = (µ ′
2/b2)

∫ Z

0
dz′

∫ z′

0
dz

[
h1(z′)h2(z)−h2(z′)h1(z)

]
, (7)
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b being the pulse width, and only the leading O(h2) term is retained in Eq. (7). The dimen-
sionless coefficient µ ′

2 is related to the output signal chirp, produced by the initial signal chirp
and/or the nonzero integral chromatic dispersion η . Recalculating the statistics of Γ using Eqs.
(4,7) one obtains the following tail S (B) for the PDF of B

S (B)dB∼ Bγ
0 dB

B1+γ , γ ≡ πDξ b2

2|µ ′
2|DmI0

, (8)

and Eq. (8) holds when ln(B/B0) 	 |µ ′
2|DmI0/[Dξ b2].

7. Non-chirped signal

If the output signal is not chirped then µ ′
2 = 0 and the first non-vanishing term in the expansion

of Γ in hj is of the third order. Expanding K1Û up to the leading term yields

Γ =
µ3

b3

∫ Z

0
dz1

∫ z1

0
dz2

∫ z2

0
dz3

{
2h3(z1)H (z2,z3)−h3(z2)H (z1,z3)−h3(z3)H (z1,z2)

}
, (9)

with H (z1,z2) = h1(z1)h1(z2)+h2(z1)h2(z2). Substituting Eq. (9) into the expression for B in
terms of Γ and making use of Eq. (4) leads to a representation of the PDF of B as a path-integral
over h. Integrating over h3 explicitly and approximating the resulting integral over h1,2 by its
saddle-point value, one finds the PDF tail

lnS ≈−4.2
(Dξ Z/I0)2/3b2

µ2/3
3 DmZ

(
ln

B
B0

)2/3

. (10)

Eq. (10) is valid at Dξ Z ln(B/B0) 	 µ3(DmZ)3/2I0/b3.

8. Simple model

The dimensionless coefficients µ ′
2, µ3 can be computed in the framework of a simple model,

with the decision level threshold Id being twice smaller than the ideal intensity, the Lorentzian
profile of the optical filter K f Ψ =

∫ t
0 dt ′ exp[−t/τ ]Ψ(t − t ′)/τ , and the step function form for

G(t) ∝ θ(T−|t|). (Note, that the optimal choice of Id and the shapes of the optical and electrical
filters in practical implementations constitutes a bit more sophisticated procedure.) We also
consider a Gaussian weakly-chirped initial signal Ψ0 ∝ exp(−t2/[2b2])(1+ iβint2/b2), βin � 1.
The output signal chirp becomes β = βin + η , η being the integral dimensionless chromatic
dispersion. Then, µ ′

2 is proportional to β , and the slope µ ′
2/β , found from the saddle-point

equations numerically, along with corresponding values of Γ0 ≡ −Dξ zlnB0/I0 and µ1,2,3 are
shown in Fig. 1 for a reasonable range of the width of the temporal slot T and optical filter
width τ , both measured in the units of the pulse width b.

9. Example

Summarizing, our major result is quantitative description of the suppression of the extremely
long tail in the PDF of BER: Eqs.(5,10,8) constitute an explicit set of expressions that allow to
compute the outage probability, defined as O =

∫ 1
B∗ dBS (B), with B∗ being some fixed value

much larger than B0. We find it useful to conclude with presenting a numerical example that
corresponds to a case relevant for the optical fiber communications. We choose the pulse width
b = 25ps, the electric filter width T = 1.25 ·b and the optical filter width τ = 0.5 ·b. According
to Fig. 1 this corresponds to the following set of dimensionless coefficients: Γ0 ≈ 0.06, µ1 ≈
−0.06, µ2 ≈ 0.12, µ ′

2/β ≈ 0.1 and µ3 ≈ 0.25. The value of Γ0 corresponds to the signal-to-noise
ratio I0/[Dξ Z] ≈ 460, and typical BER B0 ≈ 10−12. We also assume that the PMD coefficient,
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Fig. 1. Dependence of the dimensionless coefficients Γ0 = −Dξ zlnB0/I0, µ1, µ2, µ ′
2/β and µ3,

entering Eqs.(5,8,10) on the slot size T and the optical filter width τ , both measured in the units of
the pulse width b. The coefficients are calculated numerically using the simple model explained
in the text.

k =
√

12Dm, is 0.2 ps/
√

km, and the system length is Z = 3,000 km, i.e. DmZ/b2 ≈ 0.016. The
outage probability corresponding to B∗ = 10−10, i.e. the probability for B to be at least 2 orders
of magnitude larger than B0, is O ≈ 0.41 if no compensation is applied [see Eq. (5a)], while
one derives O ≈ 0.07, O ≈ ·5 · 10−5 and O ≈ 5 · 10−14 for Eq. (5b), Eq. (8) and Eq. (10) that
describe the cases of the “setting the clock”, first- and second-order compensation, respectively.
Thus, if a typical scale of the birefringence change is 0.1s one should expect an outage in
0.25s, 1.5s, 2,000s≈ 1/2 hour and 2 · 1012s≈ 60,000 years if no compensation, setting the
clock compensation and first-order compensation with chirped and non-chirped output signal,
respectively, is applied.
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